address


D2
sPeeD
Alamat : Petarukan,Pemalang
Email : denisdaiz@yahoo.co.id

Apr 10, 2011

Honda Supra With Big Valve

hehehehehe.....watch it........on my honda 1997 bike.....
Intake Porting Suzuki Smash
take from http://ratmotorsport.wordpress.com

Exhaust Tuning


1. What is Exhaust Tuning?
When I was fooling around with racing 4-stroke motorcycles a long time back, we used exhaust tuning to increase horsepower by cutting each pipe to a specific length. In order to gain the maximum effect the pipes have to be totally separate from each other, with no common manifold between any of the cylinders. That is not always practical, but it's the ideal. You will notice that on drag racing engines there are always individual pipes sticking out the sides, and those pipes are set to a specific length, which is critical.
We used a formula to determine the length of the exhaust pipe. Because the pressure waves in an exhaust system travel at the speed of sound, we had to know the approximate temperature of the exhaust gases because sound waves move faster in hot air than in cold air. Meaning, it travels further in the same amount of time in a hot gas environment versus a cold gas environment.
Then we calculated how long it would take a sound wave to move from the exhaust valve seat to the end of the pipe and back again. A round trip. Next we needed to know the approximate RPM at which we wanted to run at top end, and then determine how long the exhaust valve would be open from beginning of travel to end of travel.

2. Exhaust Tuning in 4-Stroke Engines; Valve Overlap
When we got it right we would have an exhaust pipe that would carry a positive pressure wave of exhaust pulse down the pipe to the open end. There it would collapse and create a negative pressure wave that would return back up the pipe. If the negative wave arrives back at the exhaust valve just before it closes, it will suck more of the exhaust gases out of the cylinder. This lowers the pressure inside the cylinder and makes the next intake stroke more efficient.
On a 4-stroke, the intake valve begins to open while the exhaust valve is still off it's seat. This is valve overlap. This allows the negative exhaust pulse (the reflection of the positive pulse) to actually pull more fresh mixture past the intake valve and into the cylinder. Here's how it works, and it has nothing to do with exhaust tuning as such.
When the combustion cycle begins, the piston is forced downward; this is the power stroke. Near the bottom of the power stroke the energy is mostly spent and the exhaust valve starts to open. It will actually start to open slightly before bottom dead center. The exhaust charge then begins to rush out the exhaust pipe.
The exhaust gases rushing out are further assisted by the piston pushing up on the exhaust stroke. This forms a stream of hot gas in very rapid motion away from the cylinder. This stream of hot gas has inertia and it will tend to continue moving in the same direction out the exhaust pipe even after the piston stops pushing it. This creates a region of reduced pressure in the vicinity of the exhaust valve.
By opening the intake valve just prior to top dead center, while the exhaust valve is still open (overlap), the gases going out the exhaust pipe will begin pulling the new intake mixture in behind them. Or, the intake stream will try to flow into the region of reduced pressure behind the exhaust stream, if you want to look at it that way. So overlap merely takes advantage of the inertia of the exhaust gases and the low-pressure region that it produces near the exhaust valve at the end of the exhaust stroke.
That part of the overlap design is common to all 4-stroke engines in order to gain additional charging of the cylinder with fuel mix at high RPM. The higher the RPM we design for, the greater the intake and exhaust overlap we build into the cam lobes. Most engines are fitted with exhaust manifolds that collect all the gases from a bank of cylinders. They also usually have a long pipe and muffler. So, while the physics of gases in motion will apply there, tuning for the exhaust pulse will not.

3. Intake Tuning on a 4-Stroke Engine
On the 4-stroke, intake tuning is also a consideration. When the intake valve opens, it creates a negative pressure wave which will travel to the end of the intake pipe. It is reflected as a positive wave which then travels back down the pipe. It will create a sharp, supercharging effect if it can be timed to arrive just before the intake valve closes. That requires individual carb throats to each cylinder though, and no common intake manifold.
The old Dodge Ramchargers used that method in the days when carbs were the standard way to get fuel mixture into an engine, and you could see the eight intake stacks sticking up from the hood. Those intake stacks were cut to a specific length for tuning. The intake tuning was used to "ram" a little more charge into the cylinder just before the intake valve closed; hence the name of that racing team, the Ramchargers.
So you can see the principle involved here and why both intake and exhaust systems are engineered for specific lengths if we want to make use of the pulses within the pipes. Two-strokes use the same principles, but the intake side is not tuned. We can see one undesirable side effect of the intake system on our 2-strokes, however, which is spitting back of some of the fuel mixture at lower rpms.

Woooowwwwww

Carburator and Fuel System

How The Intake Tuning Working In Your Car

The intake system on a four-stroke car engine has one main goal, to get as much air-fuel mixture into the cylinder as possible. One way to help the intake is by tuning the lengths of the pipes.

When the intake valve is open on the engine, air is being sucked into the engine, so the air in the intake runner is moving rapidly toward the cylinder. When the intake valve closes suddenly, this air slams to a stop and stacks up on itself, forming an area of high pressure. This high-pressure wave makes its way up the intake runner away from the cylinder. When it reaches the end of the intake runner, where the runner connects to the intake manifold, the pressure wave bounces back down the intake runner.

If the intake runner is just the right length, that pressure wave will arrive back at the intake valve just as it opens for the next cycle. This extra pressure helps cram more air-fuel mix into the cylinder -- effectively acting like a turbocharger.

The problem with this technique is that it only provides a benefit in a fairly narrow speed range. The pressure wave travels at the speed of sound (which depends on the density of the air) down the intake runner. The speed will vary a little bit depending on the temperature of the air and the speed it is moving, but a good guess for the speed of sound would be 1,300 feet per second (fps). Let's try to get an idea how long the intake runner would have to be to take advantage of this effect.

Let's say the engine is running at 5,000 rpm. The intake valve opens once every two revolutions (720 degrees), but let's say they stay open for 250 degrees. That means that there are 470 degrees between when the intake valve closes and when it opens again. At 5,000 rpm it will take the engine 0.012 seconds to turn one revolution, and 470 degrees is about 1.31 revolutions, so it takes 0.0156 seconds between when the valve closes and when it opens again. At 1,300 fps multiplied by 0.0156 seconds, the pressure wave would travel about 20 feet. But, since must go up the intake runner and then come back, the intake runner would only have to be half this length or about 10 feet.

Two things become apparent after doing this calculation:

1. The tuning of the intake runner will only have an effect in a fairly narrow RPM range. If we redo the calculation at 3,000 rpm, the length calculated would be completely different.
2. Ten feet is too long. You can't fit pipes that long under the hood of a car very easily.

There is not too much that can be done about the first problem. A tuned intake has its main benefit in a very narrow speed range. But there is a way to shorten the intake runners and still get some benefit from the pressure wave. If we shorten the intake runner length by a factor of four, making it 2.5 feet, the pressure wave will travel up and down the pipe four times before the intake valve opens again. But it still arrives at the valve at the right time.

There are a lot of intricacies and tricks to intake systems. For instance, it is beneficial to have the intake air moving as fast as possible into the cylinders. This increases the turbulence and mixes the fuel with the air better. One way to increase the air velocity is to use a smaller diameter intake runner. Since roughly the same volume of air enters the cylinder each cycle, if you pump that air through a smaller diameter pipe it will have to go faster.

The downside to using smaller diameter intake runners is that at high engine speeds when lots of air is going through the pipes, the restriction from the smaller diameter may inhibit airflow. So for the large airflows at higher speeds it is better to have large diameter pipes. Some carmakers attempt to get the best of both worlds by using dual intake runners for each cylinder -- one with a small diameter and one with a large diameter. They use a butterfly valve to close off the large diameter runner at lower engine speeds where the narrow runner can help performance. Then the valve opens up at higher engine speeds to reduce the intake restriction, increasing the top end power output.

KOREK HARIAN MATIC

Belakangan ini banyak mekanik merancang mesin balap skubek atau skutik.

Bahkan kabar bagusnya, tahun depan ada 4 seri lagi. Untuk itu sebagai persiapan perlu teori yang pas supaya ada panduan dan tidak salah langkah.

Paling menarik untuk dicermati kelas 150 cc. Di Yamaha Mio harus menggunakan piston 57 mm. Sedang stroke standar Mio y…aitu 57,9 mm. Bagaimana menentukan ukuran klep dan karburator yang digunakan?

Dan kita panggilkan Ibnu Sambodo yang begawan 4-tak Indonesia untuk berbagi ilmu. Menurut pria yang tinggal di Sleman, Jogja ini sebagai permulaan katanya harus menentukan letak power di rpm berapa. Jadi, bukannya menentukan besarnya klep dulu.

Ibnu mengambil contoh motor balap di tim Manual Tech. Peak power sekitar di 13.000 rpm untuk kelas 110 cc. Rata-rata tim lain bermain di 12.000 rpm. Biar gampang ditentukan di 12.000 rpm saja ya, maklum di skubek yang transmisi otomatis belum ada batasan. Juga karakter tenaga bagusnya di gasingan bawah.

Juga mesti tahu dulu gas speed (GS) di lubang porting. Menurut referensi dari tuner luar negeri 80 meter/detik. Untuk motor balap Ibnu, yaitu 100-105 meter/detik. Angka ini menentukan homogenitas campuran bensin-udara. Jika kelewat gede atau kurang dari 80 m/detik akan tidak homogen. Lebih gampang 100 m/detik saja ya.

Selanjutnya mencari ukuran diameter inlet port. Menurut mekanik beken disapa Pakde itu, paling gampang bisa diukur dari diameter lubang inlet di kepala silinder yang ketemu dengan intake manifold. Untuk menentukan besarnya bisa lihat rumus:

Diameter Piston2

Gas Speed= ————————–x Piston Speed

Diameter Inlet Port2

Piston Speed = (2 x stroke x rpm)/60.

Yamaha Mio punya stroke 57,9 mm (0,0579 meter). Pada gasingan 12.000 rpm, maka Piston Speed = (2 x 0,0579 x 12.000)/60 = 23,16 meter/detik. Nah, dari sini bisa menghitung diameter inletnya. Yaitu:

Diameter Piston²

Diameter Inlet Port = √————————–x Piston Speed

Gas speed

0,057²

Diameter Inlet Port = √—————– x 23,16

100

Diameter Inlet Port = 0,0274 meter = 27,4 m

Nah, dari sana ketahuan bahwa diameter inlet port 27,4. Dari sini memang rada rumit jika mau tahu ukuran diemeter klep ideal. “Harus melalui rumus yang panjang dan perlu riset lama. Terutama tahu dulu diagram kerja kem dan bikin pusing,” jelas Ibnu yang sarjana elektro sekaligus mesin itu.

Diameter klep tergantung letak peak power yang dimau

Untuk itu Ibnu mau kasih rumus ringan. Katanya diameter inlet port itu untuk ukuran motor cc kecil, yaitu 0,85 x diameter klep isap. Maka diameter klep isap = Diameter Inlet Port/0,85 = 27,4/0,85 = 32 mm.

Klep buang lebih kecil lagi. Besarnya berkisar 0,77 sampai dengan 0,80 x diameter klep isap. Jika diambil yang paling besar yaitu 0,80 x 32 = 25,6 mm. Nah, ini dirasa sangat gede jika klep isap 32 mm dan buang 26,6 mm. Rasanya seperti sangat susah dipasang pada kepala silinder yang hanya menggunakan piston diaemeter 57 mm.

Tapi rumus ini jika peak power kepingin berada di 12.000 rpm. Untuk ukuran matik harusnya lebih rendah lagi. Kan transmisi otomatis (CVT) butuh tenaga galak di putaran bawah supaya cepat melesat.

Jika tenaga bermain di gasingan 11.000 rpm klep isap 30,6 mm dan klep buang 24,5 mm. Kalau mau lebih rendah lagi misalnya di 10.000 rpm, maka klep isap 29,5 dan buang 23,6 atau 24 mm. Jadi, besarnya diameter klep tergantung dari letak peak power yang dimau.

Venturi Karbu

Menentukan besarnya venturi karburator juga bisa berpatokan dari perbandingan. Sebagai contoh diambil dari buku panduan flowbench merek Superflow SF-110/120. Perbandingannya 0,85 x diameter klep.

Sebagai contoh seperti di atas jika diameter klep isap 32 mm. Maka venturi karburator 32 x 0,85 = 27 mm. Namun dirasa susah mencari karburator ukuran 27 mm. Kalau mau lebih gampang, pilih aja yang 28 mm. Seperti Keihin PWK 28 misalnya.

Artikel diatas, ditulis cara menentukan besarnya diameter lubang intake atau isap di skubek. Contohnya di Yamaha Mio. Tentunya harus ditentukan dulu letak peak power di rpm berapa yang dimau.

Batang klep. Pilih yang sama dengan punya Mio biar gesekan ringan

Letak peak power atau tenaga puncak yang dimau akan menentukan besarnya diameter lubang isap. Juga akan menentukan pemilihan diameter payung klep dan ukuran karburator yang diterapkan.

Rupanya cara itu lumayan menarik perhatian skubeker yang doyang ngebut. Seperti Nugroho dari Surabaya. “Jika sudah tahu ukuran payung klep yang dipakai, kira-kira pakai punya klep apa dan gimana pasangnya?” tanya pemakai Yamaha Nouvo itu lewat SMS.

Untuk Yamaha Mio yang mau turun di kelas 150 cc pakai piston 57 mm, bisa menggunakan klep beberapa tingkatan. “Tergantung letak peak power ada di rpm berapa,” timpal Ibnu Sambodo, begawan 4-tak yang minggu lalu memberikan rumusnya.

(1) Klep Sonic
Misalnya menyesuaikan dengan klep yang tersedia di pasaran. Sebagai contoh klep Honda Sonic in 28 mm dan ex 24 mm. Herganya berkisar dari Rp 150 ribu sampai Rp 200 ribu. Namun risikonya harus potong batang klep lantaran kepanjangan. Kalau tidak repot comot aja merek TK, TDR atau Daytona khusus untuk Mio.

Klep ukuran 28/24 ini banyak dipakai skubeker. Jika menggunakan rumus yang diberikan Ibnu minggu lalu, karakter tenaga atau peak power berkisar di 9.000 rpm. Namun pakai klep ini harus menggeser posisi sudut klep di kepala silinder.

Untuk itu Chandra dari bengkel bubut Master Tjendana Bandung kasih panduan. Menurut Chandra, standar Mio klep in kemiringan dari vertikal 31,5 derajat dan klep buang 35,5 derajat. Jika memakai klep Sonic, kemiringan harus dibikin lebih landai supaya tidak saling bertabrakan.

Dari perhitungan menggunakan rumus sinus dan cosinus, didapat klep isap kemiringannya harus dibikin 29,1 derajat. “Klep buangnya 33,5 derajat dengan memperhitungkan jarak antar klep 4 mm,” jelas Chandra langsung dari Jl. Pagarsih, No. 146, Bandung.

Pasang klep lebar. Kemiringan klep harus diatur ulang di tukang bubut

Jarak antar klep bagusnya 3-4 mm supaya mesin adem

(2) Klep EE 31/25,5 mm

Pilihan kedua, jika tenaga mesin mau berada di kisaran 11.000 rpm. “Bisa pakai klep berlogo EE yang diameter payung klep isap 31 dan buang 25,5 mm,” jelas Mariasan Kocek dari JP Racing di Ciputat, Tangerang.

Jangan lupa jarak antar klep diseting 4 mm dan sudut kemiringan klep isap 28 derajat dan buang 33 derajat. Karakter klep EE antijeber alias tidak mengembang meski menggunakan per yang keras dan kem lift tinggi.

Klep ini memang batangnya lebih panjang. Konsekuensinya harus main potong supaya ukurannya sama dengan punya Mio. Namun kelebihannya diameter batang klep kecil alias sama dengan punya Yamaha Mio. Sehingga gesekan lebih ringan.

Meski harus main potong batang, namun harganya lumayan ringan. Katanya sih pihak JP Racing menjualnya dengan banderol Rp 150 ribu.

(3) Klep GL Pro Platina

Pilihan lain bisa coba klep GL-Pro platina alias tipe lama. Diameter payung klep in 31,5 mm dan ex 26 mm. Dipastikan cocok untuk mengejar tenaga di gasingan 11.500 rpm. Harganya lumayan bersahabat. Seperti buatan Indoparts yang dilego kisaran Rp 70 ribu.

Untuk pemasangan klep ini Chandra yang spesialis ubah klep itu kasih bocoran. “Kemiringan klep isap dipasang 27,5 derajat, sedang kemiringan klep buang 32,5 derajat, kondisi ini jarak antar klep biar aman 5 mm,” jelas Chandra.

Namun menggunakan klep GL-Pro meski murah ada konsekuensinya. Batang harus dipotong lantaran kepanjangan. Juga diameter batang klep lumayan gede, yaitu 5,5 mm. Bandingkan punya Mio asli hanya 5 mm.

Jarak Antar Klep

Jarak antar klep memang tergantung dari kem. Terutama overlap dan lift. “Namun jangan kelewat jauh mematok jarak antar katup isap dan buang. Bagusnya sih 3 sampai 4 mm,” jelas Jesi Lingga Siwanto dari JP Racing.

Dari analisis Jesi, jika jarak antar klep 5 mm atau lebih akan berakibat mesin panas. Biasanya leher knalpot membara. Menandakan temperatur mesin tinggi.

Namun kalau digunakan untuk keperluan racing, tetap perlu modifikasi di beberapa bagian. Juga perlu perlakuan khusus. Apalagi klep yang dipakai asalnya dari motor atau mobil harian. Tujuannya agar didapat flow atau aliran gas bakar bagus.

Paling awal bisa dilihat pada batang klep yang kepanjangan. Ini terjadi jika menerapkan klep Honda Sonic atau CS-1, GL-Pro platina dan merek EE keluaran JP Racing. Untuk itu harus dipotong disesuaikan panjang klep Mio.

Perlu diketahui, panjang standar klep Mio 65 mm. “Untuk itu, ukuran panjang klep CS-1, Sonic, GL-Pro dan EE dibikin sepanjang 65 atau 66 mm juga,” ucap Chandra Sopandi yang tukang bubut Master Tjendana itu.

Untuk memotong, gunakan mesin bubut supaya presisi. Trus diikuti dengan membuat alur untuk dudukan kuku klep (gbr. 1). Fungsi kuku klep untuk mengunci klep bareng per katup. “Alur ini posisinya 2,5 mm dari ujung batang klep,” jelas Chandra yang masih lajang itu.

Dalam membuat alur untuk kuku klep harus dibikin radius. “Lebar alur dibikin 2 mm dan radius 1 mm. Maka dalam radius hanya tinggal 0,5 mm,” jelas Chandra yang masih jomblo itu?

Rada repot kalau pakai klep GL-Pro, meski murah harus kerja dua kali. Pertama, kudu memotong klep yang kepanjangan. Kedua, kudu ngecilin diameter batang klep. Batang klep yang dikecilin pada ujungnya sejauh 8 mm. Diameter batang klep asalnya 5,5 mm dibikin 5 mm. Selanjutnya tinggal bikin alur untuk kuku klep. Hasilnya bisa lihat (gbr. 2).

Untuk membentuk batang klep EE, proses kerjanya sama dengan di klep Sonic. Kan diameter batang klep EE sama dengan punya asli Mio yang 5 mm.

gbr.1

gbr.2

Proses Hardening

Setelah klep dipotong, tentunya wajib kembali dibikin keras. Tujuannya supaya batang klep tidak jeber dipukul rocker-arm. Untuk itu, butuh proses hardening. Tekniknya batang klep dipanaskan menggunakan las asitilen. Jangan menggunakan las karbit karena dikhawatirkan kurang panas.

Perlu juga diwaspadai saat proses hardening. Jangan kelewat panas yang berisiko klep jadi patah. Sebaliknya, kalau kurang panas juga bakal lembek alias masih mudah jeber. Proses pemanasan cukup sampai membara kira-kira mendekati titik leleh besi.

Gampang kok caranya mengetahui sudah mendekati titik leleh. Perhatikan warna ketika klep dibakar. Awalnya klep akan merah membara, kemudian oranye dan begitu mencapai kelir kuning stop pemanasan.

Begitu klep berwana kuning segera celup pada cairan kimia. Cairan kimia ini campuran dari RBK (Racun Besi Kuning) atau RBM (Racun Besi Merah) dengan air. Komposisinya 100 cc air dicampur dua sendok makan RBK atau RBM. Terserah mau pakai RBK atau RBM, menurut Chandra sama saja.

“Untuk mendapatkan RBM atau RBK, bisa cari di toko kimia. Kemasan ½ kg Rp 100 ribu,” jelas Chandra dari Jl. Pagarsih, No. 146, Bandung.

Brother berkacamata itu juga kasih penjelasan. Katanya dalam proses pemanasan tidak bisa menggunakan campuran RBK plus air. Ada klep yang cukup pakai oli. Bedanya bisa langsung dites menggunakan magnet.

Magnet ditempelkan pada batang klep. Jika bersifat magnetik, klep nempel di magnet. Artinya, setelah proses hardening cukup dicelup oli. Seperti klep Sonic, batang atas nempel dan bawah enggak, maka cukup dicelup oli.

Jika seperti klep EE dan GL-Pro berlainan. Klep isap bersifat magnetik, setelah pemanasan dicelup oli doang. Klep buangnya yang non magnetik alias tidak nempel magnet harus menggunakan cairan RBK dan air.

Informasi lebih komplet seputar proses hardening, bisa konsultasi langsung sama Chandra. Brother yang sedang mendambakan kekasih ini bisa ditanya di (022) 70600396.

Radius klep

OTOMOTIFNET – Ibnu Sambodo yang begawan 4-tak masih percaya klep standar yang asli pabrik. Seperti klep Sonic yang dipakai untuk road race. Katanya punya material lebih terjamin kekutannya dibanding yang aftermarket dengan spek yang belum jelas dan tidak tahu buatan mana.

Namun digunakan untuk keperluan balap, klep standar harus dimodifikasi. Minimal dari bentuknya. Namun jika batangnya dipotong, tetap harus dihardening atau diperkeras supaya kuat. Seperti ditulis minggu lalu.

Kali ini Ibnu kasih tahu modifikasi dari ukuran. Pertama ukuran pada bagian pertemuan antara payung dengan batang klep. “Bagian ini membentuk radius atau sudut,” jelas Ibnu yang asli wong Jowo itu.

Untuk klep racing biasanya dibuat enteng. Maka pada bagian radius atau leher ini dibuat tipis. “Tapi kendalanya flow atau aliran gas bakar rada berkurang karena membentuk lekukan yang tajam,” jelas Ibnu yang kini mulai tinggal di Jakarta mengurus tim Kawasaki.

Diakui juga oleh pria beken disapa Pakde ini. Katanya membentuk bagian ini rada susah, tukang bubut juga belum tentu presisi. “Makanya untuk sementara banyak dilupakan atau dikira-kira dulu,” jelas mekanik yang berpenampilan sederhana ini.

Untuk keperluan balap, sementara sebagai patokan, Ibnu kasih radius 1/3 dari diameter payung klep. Sebagai contoh klep isap 28 mm, jika dikalikan 1/3 hasilnya 9,3 mm.

Jika merunut dari buku Four-Stroke Performance Tuning karangan A. Graham Bell, sedikit berbeda. Untuk ruang bakar hemi chamber dengan klep miring, besarnya 0,24-0,26 dari diameter payung klep. Andaikan 0,26 x 28 mm hasilnya radius leher klep 7,28 mm.

Menurut Ibnu, ini bukan rumus. Hanya sebagai perbandingan. Apalagi riset yang dilakukan oleh Graham Bell dilakukan di mobil. Mesin mobil dan motor berbeda putaran. Untuk motor balap bergasing sampai 14.000 rpm, sedang di mobil hanya separuhnya.

Perlu dipertimbangkan dalam menggunakan perbandingan Ibnu atau Graham. Radius yang kelewat gede atau kecil ada pengaruh terhadap flow dan berat klep. Jika lekukan atau radius kecil tidak tajam tapi bagus untuk flow. Tapi klep jadi berat.

Berbeda jika leher klep dibikin dengan radius besar. Dari sisi bobot memang enteng, tapi terdapat lekukan yang tajam. Bikin flow jadi berkurang, untuk itu harus tetap mempertimbangkan dua faktor ini.

Perkecil batang hanya sampai ujung bos klep

Batang Diperkecil

Untuk memperbesar flow, batang klep juga harus dimodifikasi. Terutama batang klep yang berada di lubang atau port isap dan buang. Batang klep yang kebesaran lumayan menghambat aliran gas bakar.

Pada klep bebek yang hanya 5 mm, oleh Ibnu Sambodo hanya dibikin 4,5 mm. Bagian ini dari radius klep sampai bagian yang menyentuh tepat dibibir bos klep. Jangan kelewat dalam yang berakibat sedikitnya kontak antara batang klep dengan bosnya. Jadinya cepat oblak.

Bahkan menurut Ibnu lagi, sebenarnya bisa saja batang klep dari radius atau leher sampai bibir bos klep dibikin 4 mm. Namun risikonya ketahanan jadi berkurang. Tapi aliran gas bakar lebih lancar.

Sudut 45 ketemu sitting klep, sudut 30 untuk flow Sudut 45 Dan 30 Derajat

Kedua sudut di bibir payung klep ini belum lama ditulis oleh MOTOR Plus tepatnya edisi 507. Fungsinya untuk memperlancar flow gas bakar. Sekadar mengingatkan, sudut 45 derajat paling bawah dan di atasnya 30 derajat.

Dua sudut ini harus dibentuk menggunakan reface valve. Nantinya sudut yang 45 derajat akan bersentuhan dengan sitting klep di kepala silinder. Sedang yang 30 derajat untuk mempermudah aliran gas bakar.

Dibuat Cekung

Untuk memperingan bobot klep, masih ada cara yang bisa ditempuh. Caranya dengan membuat tipis payung klep. Namun jangan terlalu tipis yang bisa berakibat klep gampang pecah. Bagian yang bisa dibuang daging pada tengah payung klep, caranya dibuat cekung.

Payung klep cekung seperti di katup Sonic atau CS-1. Meski cekung namun tidak terlalu dalam yang berakibat kompresi turun. Tapi, bagian yang cekung di tengah ini dirasa tidak mengurangi kekuatan klep. Sebab masih tebal lantaran di belakangnya masih ada batang klep.

Ibnu bilang, bagian paling luar klep memang lebih kuat dibanding dalam. Untuk itu, ketika mengikis klep jangan terlalu dalam. Katanya bisa mengurangi kekuatan dari klep itu sendiri

JETTING CARBURETOR

Jetting is the process of making adjustments to the air and fuel jet sizes in order to fine tune the carburetion to suit the load demands on the engine and make the power delivery consistent and optimum. Too much anxiety is placed on jetting. Most people just want to call me on the phone and ask what jets they should put in their carb. That’s an impossible question because that the big dirt bike magazines attempt to answer just to increase readership. People get confused because they read jetting specs in a magazine, put those jets in their bike and seize the engine. Any quoted jetting in this book is just a baseline. Most magazines don’t list parameters for their jetting specs like; Brand new bike running with VP C-12 fuel with Silkolene oil mixed at 30:1 and a NGK 8 spark plug, ridden by a really slow lard-ass editor twisting the throttle on a hard-packed track. Some part numbers and jet sizes are given in the Tuning Tips section for models that definitely need certain jets in order to get the bike near the baseline. There is an old saying that says you can fish for a man and feed him for a day or teach him to fish and enable him to feed himself for life. Here is a quick lesson on how to jet your dirt bike.

The Differences in Two-Stroke and Four-Stroke Carbs

The difference between a two-stroke and four-stroke engine is intake velocity. Two-stroke engines have lower velocity so the needle jet has a half-moon shaped hood protruding into the venturi to produce a low pressure area that aids in drawing the fuel up through the needle jet. Four-stroke carbs need to atomize the fuel more so than a two-stroke carb because so much of the fuel shears along the intake port and separates from the mixture stream. Four-stroke carbs have more jets and finer adjustment screws, plus they usually are equipped with an accelerator pump. A typical state of the art four-stroke carb is the Keihin CR.
The latest trend in two-stroke carbs features a pump that sprays fuel into the venturi from 1/4th to 3/4th throttles. In the past, carb manufacturers made jet needles that attempted to compensate for the natural lean condition of the mid-range but that compromised the jetting at full throttle. The auxiliary pumps are powered by electricity supplied by the alternator (about 5 watts) and controlled by either a throttle position or an rpm sensor.

Identification Guide to Popular Carb Types
Keihin PWK Carburetor.
Keihin PWK Carburetor.
On two-stroke engines, several different model carbs have been used over the years, but there are basically two big carb manufacturers. Kehin and Mikuni are two popular brands of Japanese carbs used on nearly every dirt bike.
Kehin has several different models. The most popular ones are the PJ, PWK, and PWM. The PJ is used on Honda CR125, 250, and 500 models from 1985-1997 The slide is oval shaped and there are no additional pumps, and it’s just a simple carb. In fact it’s so simple that the choke and idle screw share the same jet. The PWK was the next step up from the PJ. The PWK has a crescent shaped slide and a separate idle circuit from the choke. The PWK is used on Kawasaki KX125, 250, and 500 models from 1990-97. The latest version of the PWK features a pump to supply extra fuel in the mid-range. The PWM is similar to the older PWK (no pump) and the overall length is shorter.
Mikuni has several different model carbs too. The original model VM had a round slide. There are many different parts available including needle jets of different diameters and jet needles with different taper angles and diameters. The next model was the TMX, which became available in 1987. It was a flat-slide carb, which offered a greater peak flow rate. The TMX was revised several times, becoming smaller with fewer parts. The TMS carb introduced in 1992 had no main or pilot jet. The slide and jet needle handled all the jetting. That carb worked great on 250cc bikes but never became popular. The PM is the latest Mikuni model. It features an oval crescent shaped slide and a very short body. That carb comes standard on Yamaha YZ125 and 250 1998 and newer models.
Carburetor Parts and Function
A carburetor is a device that enables fuel to mix with air in a precise ratio while being throttled over a wide range. Jets are calibrated orifices that take the form of parts such as pilot/slow jets, pilot air screw, throttle valve/slide, jet needle, needle jet/spray-bar, air jet, and main jet. Fuel jets have matching air jets, and these jets are available in many sizes to fine-tune the air-fuel mixture to the optimum ratio for a two-stroke engine, which is 12.5: 1.
Fuel Jets, Air Jets, and Throttle Positions
Three circuits control the air: the air-screw, the throttle slide, and the air jet. Four circuits control the fuel: the pilot/slow jet, the spray-bar/needle jet, the jet needle, and the main jet. The different air and fuel circuits affect the carb jetting for the different throttle-opening positions, as follows:
Closed to 1/8 throttle—air screw and pilot/slow jet
1/8 to 1/4 throttle—air-screw, pilot/slow jet, and throttle slide
1/4 to 1/2 throttle—throttle slide and jet needle
1/2 to full open—jet needle, spray-bar/needle jet, main jet, and air jet
(Note: On many modern carbs the spray-bar/needle jet and air jets are fixed-diameter passages in the carburetor body and cannot be altered.)
carb_jet_usage1

Mar 7, 2011

Inlet Porting

This is a decription about inlet porting

CHASIS TIPS 1

CHASSIS TIPS:
Stock Car Q&A with Michael Leone

QUESTION: When shortening the rear upper trailing arms
to change the pinion angle, it seems to bind up the
upper arms due to their shortened length. They seem to
need to be pinched together more in order to have the
correct angles and movement. Any thoughts and
suggestions would be helpful.

ANSWER: Moving the holes does create some bind, no easy
way around it, but there are some things that you can
do that will help.

First of all you can't go too far, maybe an inch or two
max. When you drill the holes, do them with the arms in
the car, at proper ride height (on blocks), with the
correct tires and stagger (no springs). Rock the rear
housing forward to the angle you want, then drill the
holes through the bushing. You will have to run the
bolts a little loose to prevent bind. Weld big washers
on each side to prevent the loose bolt from wearing the
hole into a slot. You can also use upper arms out of a
late 60's chevelle, they are shorter from the factory.
I always preferred shortening the stock ones though,
that way you can line the holes up right. We used to
check for proper bolt tightness by putting the car in
gear (or park) and rocking the car forward and back.
look at the rear arms through the trunk, if the bolts
are too loose, you'll see it. Make sure that every
bushing/frame/mount surface is smooth and lubricated
with anti-seize. Make sure that the spring pockets are
flat after you change the pinion angle.

ENGINE TIPS

ENGINE TIPS:
"5 tips for shaving ET this weekend - Part 1"
By Don Terrill
taken from http://racingsecret.com

1.) More RPM - I've found that it's just about
impossible to have too much (higher number) gear in
your car if your goal is the lowest ETs. Just keep
adding gear ratio until you stop gaining ET, even if
the MPH falls off. Remember: racing is usually ET not
MPH.

2.) Jetting - If I had to guess I'd say that 80% of all
race engines are jetted too rich. Some of the signs of
a rich setting are an engine that misses or surges. Try
jetting down two sizes and see what happens. Learning
how to read spark plugs is my best advice.

3.) Ignition Timing - Go up or down two degrees and
make a test. I've seen engines tuned with just a couple
of degrees too much timing lose 30hp, so don't think
you can't have too much.

4.) Oil - If you aren't using synthetic oil already,
try it, it's worked every time for me. The other big
thing is oil level, on a wet sump engine too much oil
is a killer. No engine needs more than 6gts, no matter
what the pan manufacture says. In fact; too much oil is
bad.

5.) Shift Points - If you're going to miss your shift
point, miss it early. A late shift is an ET killer,
especially in the lower gears. Here's a test: If you
seem to really be knocked back into the seat after the
shift, you're late. The Reason? Your body went forward
before the shift because of lack of acceleration.

For info on how to read spark plugs:
http://racingsecrets.com/spark_plug_reading.shtml